Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 130(6): 1059-1072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278976

RESUMO

BACKGROUND: Inhibition of mutant KRAS challenged cancer research for decades. Recently, allele-specific inhibitors were approved for the treatment of KRAS-G12C mutant lung cancer. However, de novo and acquired resistance limit their efficacy and several combinations are in clinical development. Our study shows the potential of combining G12C inhibitors with farnesyl-transferase inhibitors. METHODS: Combinations of clinically approved farnesyl-transferase inhibitors and KRAS G12C inhibitors are tested on human lung, colorectal and pancreatic adenocarcinoma cells in vitro in 2D, 3D and subcutaneous xenograft models of lung adenocarcinoma. Treatment effects on migration, proliferation, apoptosis, farnesylation and RAS signaling were measured by histopathological analyses, videomicroscopy, cell cycle analyses, immunoblot, immunofluorescence and RAS pulldown. RESULTS: Combination of tipifarnib with sotorasib shows synergistic inhibitory effects on lung adenocarcinoma cells in vitro in 2D and 3D. Mechanistically, we present antiproliferative effect of the combination and interference with compensatory HRAS activation and RHEB and lamin farnesylation. Enhanced efficacy of sotorasib in combination with tipifarnib is recapitulated in the subcutaneous xenograft model of lung adenocarcinoma. Finally, combination of additional KRAS G1C and farnesyl-transferase inhibitors also shows synergism in lung, colorectal and pancreatic adenocarcinoma cellular models. DISCUSSION: Our findings warrant the clinical exploration of KRAS-G12C inhibitors in combination with farnesyl-transferase inhibitors.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Colorretais , Neoplasias Pulmonares , Neoplasias Pancreáticas , Humanos , Animais , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Transferases , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Mutação
2.
PLoS One ; 9(11): e112397, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25393626

RESUMO

BACKGROUND: High-dose radiation-induced blood-brain barrier breakdown contributes to acute radiation toxicity syndrome and delayed brain injury, but there are few data on the effects of low dose cranial irradiation. Our goal was to measure blood-brain barrier changes after low (0.1 Gy), moderate (2 Gy) and high (10 Gy) dose irradiation under in vivo and in vitro conditions. METHODOLOGY: Cranial irradiation was performed on 10-day-old and 10-week-old mice. Blood-brain barrier permeability for Evans blue, body weight and number of peripheral mononuclear and circulating endothelial progenitor cells were evaluated 1, 4 and 26 weeks postirradiation. Barrier properties of primary mouse brain endothelial cells co-cultured with glial cells were determined by measurement of resistance and permeability for marker molecules and staining for interendothelial junctions. Endothelial senescence was determined by senescence associated ß-galactosidase staining. PRINCIPLE FINDINGS: Extravasation of Evans blue increased in cerebrum and cerebellum in adult mice 1 week and in infant mice 4 weeks postirradiation at all treatment doses. Head irradiation with 10 Gy decreased body weight. The number of circulating endothelial progenitor cells in blood was decreased 1 day after irradiation with 0.1 and 2 Gy. Increase in the permeability of cultured brain endothelial monolayers for fluorescein and albumin was time- and radiation dose dependent and accompanied by changes in junctional immunostaining for claudin-5, ZO-1 and ß-catenin. The number of cultured brain endothelial and glial cells decreased from third day of postirradiation and senescence in endothelial cells increased at 2 and 10 Gy. CONCLUSION: Not only high but low and moderate doses of cranial irradiation increase permeability of cerebral vessels in mice, but this effect is reversible by 6 months. In-vitro experiments suggest that irradiation changes junctional morphology, decreases cell number and causes senescence in brain endothelial cells.


Assuntos
Lesões Encefálicas/etiologia , Encéfalo/irrigação sanguínea , Encéfalo/efeitos da radiação , Circulação Cerebrovascular/efeitos da radiação , Albuminas/química , Animais , Barreira Hematoencefálica/efeitos da radiação , Peso Corporal , Senescência Celular , Claudina-5/metabolismo , Técnicas de Cocultura , Relação Dose-Resposta à Radiação , Células Endoteliais/citologia , Azul Evans/química , Feminino , Fluoresceína/química , Leucócitos Mononucleares/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/citologia , Permeabilidade , Células-Tronco/citologia , Proteína da Zônula de Oclusão-1/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...